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Abstract

We investigate families of languages de%ned by closure under operations generalized from
models of gene descrambling in stichotrichous ciliates. We speci%cally consider languages that
are closed under the synchronized insertion and deletion operations as well as languages closed
under the hairpin inversion (hi) operation. Biologically, this studies sets of genes that cannot
be further descrambled. In addition, we show that every trio closed under hairpin inversion
is also closed under the double loop with alternating direct pointers (dlad)-excision/reinsertion
bio-operation.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The stichotrichous ciliates are a family of single-celled organisms with a unique
genetic computational mechanism. The germline genome of these ciliates consists of
genes stored in a scrambled form which the cell must descramble in order to create a
functional gene capable of generating proteins.

Each ciliate cell contains both a functional macronucleus, with unscrambled versions
of the ciliate’s genes and an inert micronucleus, containing scrambled versions of the
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genes. When two ciliates conjugate, their respective macronuclei are destroyed, and
they exchange the genetic material in their micronuclei. The cell is then faced with
the daunting task of unscrambling the micronuclear genes in order to re-construct a
functional macronucleus. For details on the biological aspects of this operation, the
reader is referred to [19,20].

It was %rst noted by Kari and Landweber [18] that it is natural to view this process
as a computation. A collection of papers describing the abstract properties of such a
computation followed, primarily based upon two principal models of gene scrambling.
The %rst model, proposed by Kari and Landweber is based on one inter-molecular, and
one intra-molecular operation and has been investigated in [3,5,17]. The second model,
proposed by Ehrenfeucht, Prescott and Rozenberg is based upon three intra-molecular
operations and has been studied in [4,7–9].

Previous work, particularly on the Kari–Landweber model, has considered the gene
descrambling problem from the point of view of operations on well-known language
families. Speci%cally, the closure properties and solvability of language equations
involving standard language families was investigated.

In this paper we take a diKerent approach. Rather than considering properties of
known families of languages under ciliate bio-operations, we will de%ne new families
of languages based upon closure under ciliate bio-operations. We will then investigate
the formal language theoretic properties of these new language families in an attempt
to better understand the structure and properties of ciliate genomes. This is a natural
investigation biologically, as it corresponds with the study of sets of genes which
cannot be further descrambled using iterated application of the operation. In this sense,
no further evolution is possible using the chosen operation.

2. Preliminaries

We begin with a brief review of the notation and concepts used throughout the
paper. Let N be the set of positive integers and let N0 be the set of nonnegative
integers. Let X be a set and let k ∈N. We denote by [X ]k the set of all k-tuples
(x1; : : : ; xk) where xi ∈X .

We refer the reader to [15] for language and automata theory preliminaries. Let
�= {a1; : : : ; ak} be a %nite alphabet where k ∈N. We denote by �∗ and �+ the sets of
words and nonempty words, respectively, over �. We denote the empty word by 	. Let
w∈�∗. Then |w| denotes the length of w, and for each a∈�; |w|a denotes the number
of occurrences of a in w. Let �(a1 ; :::; ak ), or � when (a1; : : : ; ak) is understood be the
mapping from �∗ into [N0]k de%ned by �(w) = (|w|a1 ; : : : ; |w|ak ) for each w∈�∗. We
call this function a Parikh mapping and we call �(w) the Parikh vector of w. Let
alph(w) be the set of letters from � occurring in w which we extend to languages L
in the natural way. Let wR be the word obtained from w by reversing the positions of
the letters. A language is any subset of �∗. Let L⊆�∗. We denote the complement of
L, �∗ − L by L.

We will next de%ne an a-transducer. Intuitively, it is a nondeterministic gsm that
allows output on a 	 input. They are also referred to as rational transducers. An
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a-transducer is a six-tuple M = (Q;�1; �2; �; q0; F), where Q is the %nite state set, �1 is
the input alphabet, �2 is the output alphabet, � is a %nite subset of Q×�∗

1 ×�∗
2 ×Q,

q0 ∈Q is the initial state and F ⊆Q is the set of %nal states. We say that M is
	-free if �⊆Q×�∗

1 ×�+
2 ×Q. Let � be the relation on Q×�∗

1 ×�∗
2 de%ned by

letting (q; xw; z1) � (p;w; z2) for each w∈�∗
1 if (q; x; y; p) ∈ � and z2 = z1y. A triple

(q; w; z) represents the fact that M is in state q, with w the input still to be read,
and z the accumulated output. Let �∗ be the reMexive, transitive closure of �. Let
M= (Q;�1; �2; �; q0; F) be an a-transducer. For each word w∈�∗

1 , let M (w) =
{z | (q0; w; 	) �∗ (q; 	; z) for some q∈F}. For every set L⊆�∗

1 , let M (L) =
⋃

w∈L M (w).
The mapping M is called an a-transducer mapping or a-transduction.

A trio is a language family (where a language family is de%ned as in [10]) closed
under 	-free homomorphism, inverse homomorphism and intersection with regular sets.
It is known that every trio is closed under 	-free a-transductions. A full trio 1 is a
trio closed under arbitrary homomorphism. It is known that every full trio is closed
under arbitrary a-transductions and hence arbitrary gsm mappings. We refer the reader
to [2,10] for the study of AFLs.

Let k ∈N. A one-way, nondeterministic k-pushdown machine is a six-tuple M=
(Q;�; q0; F; �; �; Z0) where Q is the %nite state set, q0 ∈Q is the initial state, F ⊆Q is
the %nal state set, � is the input alphabet, � is the %nite pushdown alphabet, Z0 ∈� is
the end-marker and � (the transition function) is a mapping from Q× (�∪ {	}) × [�]k

into %nite subsets of Q×[�∗]k . Further, we will assume that if (q; z1; : : : ; zk)∈�(q1; a; y1;
: : : ; yk) then |zi|62 for all i and Z0 ∈ alph(zi) if and only if zi =Z0z; Z0 
∈ alph(z) and
yi =Z0.

If |�(q; a; z1; : : : ; zk) ∪ �(q; 	; z1; : : : ; zk)|61 for each q∈Q; a∈� and z1; : : : ; zk ∈�,
then M is said to be deterministic.

An instantaneous description of M = (Q;�; q0; F; �; �; Z0) is a k+2 tuple, (q; w; �1; : : : ;
�k), where q∈Q is the current state, w∈�∗ is the remaining input and �i ∈�∗ is
the current contents of the ith pushdown. Let � be the derivation relation de%ned on
Q×�∗ × [�∗]k such that (q; aw; �1y1; : : : ; �kyk) � (p;w; �1z1; : : : ; �kzk) if (p; z1; : : : ; zk) ∈
�(q; a; y1; : : : ; yk) for a∈�∪ {	}. Let �∗ be the reMexive, transitive closure of �. We
de%ne the language accepted by M , L(M) = {w | (q0; w; Z0; : : : ; Z0) �∗ (qf; 	; �1; : : : ; �k);
qf ∈F; �i ∈�∗ for each i}.

If |�| = 2, (the end-marker Z0 plus one other pushdown letter), we say that M is
a one-way nondeterministic k-counter automaton (or a multicounter automaton). We
say that the ith pushdown is j-reversal-bounded if the ith pushdown makes at most
j alternations between nondecreasing and nonincreasing its size on any computation
of any input. If every pushdown of M is j-reversal-bounded, then we say that M is
j-reversal-bounded or just reversal-bounded. The notion of reversal-bounded pushdown
automata, originally referred to as %nite turn pushdown automata, was introduced in
[11] and also studied in [1].

For example, one-way, deterministic 2-counter languages have the same power as
a Turing Machine [15]. Also, one-way nondeterministic 1-pushdown automata accept

1 A full trio is also referred to as a cone.
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exactly the context-free languages and one-way nondeterministic 1-reversal-bounded,
1-pushdown automata accept exactly the linear languages.

3. Synchronized insertion and deletion closed languages

We now de%ne the ciliate bio-operations of synchronized insertion, synchronized
deletion and synchronized bi-deletion from [5].

The synchronized insertion operation inserts a word of the form vx into a word of
the form uxw, using x as a pointer sequence, to create the word uxvxw. The second
operation, synchronized deletion, deletes a word of the form vx from a word of the
form uxvxw to create the new word uxw.

De�nition 1. Let � be an alphabet and �; �∈�∗.
(1) The synchronized insertion of � into � is de%ned as: �⊕ �= {uxvxw | �= uxw;

�= vx; x∈�+; u; v; w∈�∗}.
(2) The synchronized deletion of � from � is de%ned as: �� �= {uxw | �= uxvxw;

�= vx; x∈�+; u; v; w∈�∗}.
(3) The synchronized bi-deletion of � from � is de%ned as: �� �= {w | �= xayaz;

�= xaz; w=ya; a∈�; x; y; z ∈�∗}.
We extend each of the operations above to binary operations on languages in the

natural way.

We recall the following lemma from [5], that shows that it is only necessary to
consider “pointer” sequences of length one.

Lemma 2. Let � be an alphabet. For any �; �∈�∗,
(1) �⊕ �= {u′av′aw′ | �= u′aw′; �= v′a; a∈�; u′; v′; w′ ∈�∗}.
(2) �� �= {u′aw | �= u′av′aw; �= v′a; a∈�; u′; v′; w∈�∗}.

We begin by de%ning the synchronized insertion closure of a language.

De�nition 3. Let � be an alphabet. We de%ne the synchronized insertion closure over �
(we omit � if the alphabet is understood) of a language L⊆�∗ as sins(L) = {�∈�∗ | ∀�
∈L; �⊕ �⊆L}. Moreover, we say a language L is sins-closed over � (we omit � if
the alphabet is understood) if and only if L⊆ sins(L).

We now give some examples of sins-closed languages and some languages which
are not sins-closed.

Example 4. (1) sins(�∗) =�∗.
(2) sins(Lab) =Lab where Lab = {x∈�∗ | |x|a = |x|b¿0}.
(3) L= {anbn | n¿0}, sins(L) = {	}.
(4) If L1 = {a2}∗ then sins(L1) =L1. In addition, if L2 = aL1 then sins(L2) =L1.
(5) L= b∗ab∗, sins(L) = b∗.
(6) Let � be an alphabet and let a; b∈�. If L= a�∗b then sins(L) =�∗.



M. Daley et al. / Theoretical Computer Science 320 (2004) 51–69 55

To better understand the properties of sins-closure, we introduce the notion of
density.

De�nition 5. A language L is dense if for all w∈�∗, there exist x; y∈�∗ such that
xwy∈L.

Proposition 6. Let � be a nonempty alphabet and alph(L) =�. If sins(L) =�∗, then
L is dense. Furthermore, the converse is not true. (L dense 
⇒ sins(L) =�∗).

Proof. For proving density, we must consider both nonempty and empty values of w.
If w=w′a∈�+ ⊆ sins(L); a∈�, then for all u= xaz ∈L, xawz = xaw′az is in L.

Since a∈ alph(L), there must exist such a u∈L. Thus, there exists xa; z ∈�+ such that
xawz ∈L. If w= 	 then clearly there exists x; y∈�∗ such that xy∈L since alph(L) =
� 
= ∅ and thus L 
= ∅.

Therefore L is dense.
To see that the converse is not true, consider the language Lab = {x∈�∗ | |x|a =

|x|b¿0}, �= {a; b}. Clearly, Lab is dense since for any word w∈�∗, we can %nd
x; y∈�∗ to ensure the number of a’s and b’s in w is balanced. However, sins(Lab) =Lab
and thus the implication does not hold as �∗ 
=Lab.

We now give a characterization of sins-closure in terms of synchronized
bi-deletion.

Proposition 7. Let � be an alphabet and L⊆�∗. Then

sins(L) = (L� L):

Proof. “⊆” Suppose x∈ sins(L), then for all u∈L, u⊕ x⊆L. Assume, by way of con-
tradiction, that x 
∈ (L�L). It must then be the case that x∈L�L and x∈ x′ayax′′� x′

ax′′, x′ayax′′ ∈L, x′ax′′ ∈L, x=ya. There exists a word x′ax′′ ∈L such that x′ax′′ ⊕x 
⊆L
and thus x 
∈ sins(L), a contradiction.

“⊇” Suppose x∈ (L�L). Assume x 
∈ sins(L). Then there must exist u∈L such that
u⊕ x 
⊆L. Let u= u′au′′ and x= x′a, then u′ax′au′′ 
∈L and thus x= x′a∈L�L (as
u′ax′au′′ ∈L and u′au′′ ∈L), a contradiction. The proposition now follows.

Next, we de%ne the synchronized deletion closure of a language and demonstrate a
similar characterization of the closure in terms of synchronized bi-deletion.

De�nition 8. Let � be an alphabet. We de%ne the synchronized deletion closure over �
(we omit � if the alphabet is understood) of a language L⊆�∗ as sdel(L) = {x∈�∗ | ∀u
∈L; u� x⊆L}. Furthermore, we say a language L is sdel-closed over � (we omit �
if the alphabet is understood) if and only if L⊆ sdel(L).

Proposition 9. Let � be an alphabet and L⊆�∗. Then

sdel(L) = (L� L):
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Proof. “⊆” Suppose x∈ sdel(L) which implies for all u∈L, u� x⊆L. Assume
x 
∈ (L�L), equivalently, x∈ (L�L) and speci%cally x∈ �ax′a�� �a�, �ax′a�∈L,
�a�
∈L. Then x= x′a and thus �a�∈L� x⊆L, a contradiction since �a�∈L.

“⊇” Suppose x∈ (L� L). Assume x 
∈ sdel(L). There must then exist u∈L such that
u� x 
⊆L. Then u can be written as u= u′ax′au′′ ∈L, x= x′a where u′au′′ ∈ u′ax′au′′ � x
and u′au′′ 
∈L. But then x∈L�L, a contradiction, and the proposition follows.

In the case when we start with a sins-closed language, we give a simple characteri-
zation of whether the language is also sdel-closed.

Proposition 10. Let L⊆�+ be an sins-closed language. Then L is sdel-closed if and
only if L�L=L.

Proof. “⇒”
“⊇” Follows trivially from the de%nition of sdel-closure.
“⊆” Let u= u′a∈L. As L is sins-closed, we have uu∈u′a⊕u′a⊆L and thus u∈L�L.
Consequently L=L�L.
“⇐” Trivial, as clearly L=L�L⇒L is sdel-closed.

Let us denote the family consisting of all languages L whereby there exists a %nite
alphabet �, L⊆�∗ such that L is sins-closed over � by SINS. We de%ne the family
of all sdel-closed languages, SDEL similarly. Notice that SINS is equal to the family
of languages such that ∅; {	} are in the family and if � is a %nite alphabet with
alph(L) =� and L is sins-closed, then L is in the family. Similarly for SDEL.

We will now give the closure properties of the family SINS. It is not closed under
most of the classical operations.

Proposition 11. The family of synchronized-insertion-closed languages is not closed
under (i) union, (ii) catenation, (iii) homomorphism, (iv) intersection with a regular
set, (v) Kleene closure (vi) complement or (vii) inverse homomorphism.

Proof. (i) Let �= {a; b}. Consider the languages (ab)∗; a∗ ∈SINS. The language (ab)∗

∪ a∗ is not in SINS.
(ii) a∗; b∗ ∈SINS but a∗ · b∗ = a∗b∗ 
∈SINS.
(iii) The language d∗ is clearly in SINS. Consider the homomorphism from {d}∗

into {a; b; c}∗ de%ned by h : h(d) = cacbc. Then h(d∗) = (cacbc)∗ 
∈SINS.
(iv) Consider Lab = {x∈�∗ | |x|a = |x|b¿0} over �. Lab ∈SINS and a∗b∗ is a regular

language but Lab ∩ a∗b∗ = {anbn | n¿0} which is not in SINS.
(v) The language L= (aaa)∗ ∪ (bbb)∗ over � is in SINS and aaabbb∈L∗. However,

aaabaaabbbbb∈ aaabbb⊕ aaabbb and aaabaaabbbbb 
∈L∗.
(vi) Let L be a unary language over the alphabet {a} such that Leven = {w |w

contains an even number of a’s}. Clearly L∈SINS as the sum of any two even
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numbers is even. Now consider the complement of Leven, (Leven) =Lodd = {w |w con-
tains an odd number of a’s}. Then aaa∈Lodd but aaa⊕ aaa= {aaaaaa} which is not
in Lodd.

(vii) Let L= a∗ ∪ {c} ∈SINS. Consider the homomorphism h : {a; b; c}∗ → {a; c}∗

given by: h(a) = a, h(b) = 	, h(c) = c. Then h−1(L) = {a; b}∗ ∪ b∗cb∗ and abb; cb∈ h−1

(L) but abb⊕ cb= abcbb which is not in h−1(L).

We recall that an anti-AFL is a language family that is not closed under any of
the AFL operations: homomorphism, inverse homomorphism, intersection with regular
languages, union, concatenation and Kleene Closure.

Corollary 12. SINS is an anti-AFL.

Proposition 13. The family of sins-closed languages is closed under intersection.

Proof. Let L1; L2 ∈SINS. We will show that L1 ∩L2 ⊆ sins(L1 ∩L2).
Let w∈L1 ∩L2. By the de%nition of SINS we have that for all v1 ∈L1, v1 ⊕w⊆L1.

Likewise, for all v2 ∈L2, v2 ⊕w⊆L2. It follows immediately that for all v∈L1 ∩L2,
v⊕w⊆ (L1 ∩L2) and thus w∈ sins(L1 ∩L2) and the proposition follows.

We consider now the closure properties of SDEL under standard operations.

Proposition 14. The family of synchronized-deletion-closed languages is not closed
under (i) union, (ii) catenation, (iii) homomorphism, (iv) intersection with a regular
set, (v) Kleene closure (vi) complement or (vii) inverse homomorphism.

Proof. (i) Consider Lab = {w | |w|a = |w|b¿0}; a∗ ∈SDEL. Clearly, Lab ∪ a∗ is not in
SDEL.

(ii) The languages L= {a}; Leven = {w |w= an; n even} are in SDEL, however L ·
Leven =Lodd which is not in SDEL.

(iii) L= (ba(aa)∗) is trivially in SDEL. Consider the homomorphism h :�∗ →�∗

given by h(a) = a, h(b) = 	. then h(L) = a(aa)∗ =Lodd which is not in SDEL.
(iv) The language Lodd is regular, and L= a∗ is in SDEL, however, Lodd ∩ a∗ =Lodd

which is not in SDEL.
(v) Let �= {a; b; c; d; e} and L= {aaecc; bbedd; ccbbe} which is trivially in SDEL.

Then aaeccbbedd; ccbbe∈L∗ but aaeccbbedd� ccbbe= aaedd 
∈L∗.
(vi) Leven is in SDEL but (Leven) =Lodd is not.
(vii) Let L= {ac; c}. Trivially, L is in SDEL. Now consider the homomorphism

h : {a; b; c}∗ → {a; c}∗ given by h(a) = a, h(b) = 	, h(c) = c. Then h−1(L) = b∗ab∗cb∗ ∪
b∗cb∗ and abcb; cb∈ h−1(L). However, abcb� cb= {ab} which is not in h−1(L).

Corollary 15. SDEL is an anti-AFL.

Proposition 16. The family of sdel-closed languages is closed under intersection.
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Proof. Symmetric to the proof of Proposition 13.

Since we have characterizations of sins- and sdel-closure in terms of synchronized
bi-deletion, we brieMy study families of languages closed under this operation.

Proposition 17. Every intersection-closed full trio is closed under �.

Proof. Let L be an intersection-closed full trio and let L1; L2 ∈L. Let M be an
a-transducer that, on input w, guesses a partition of w= xaz where a∈�; x; z ∈�∗, and
outputs xa followed by a new symbol c, then it outputs an arbitrary word y∈�∗,
followed by ca, then z. Let L′

2 be the language obtained from L2 via M . Thus, every
word of L′

2 will be of the form xacycaz where xaz ∈L2 and y∈�∗. Let M ′ be another
a-transduction which guesses a partition of input w= uavas, where a∈�; u; v; s∈�∗

and outputs uacvcas. Let L′
1 be the language obtained from L1 via M ′. Furthermore,

let L=L′
1 ∩L′

2. Every word of L is of the form xacycaz where xaz ∈L2; xayaz ∈L1.
Let L′ be obtained from L by another a-transduction that erases everything until and
including the %rst c, outputs the input until the next c, erases the c, outputs the next
input symbol and erases everything after. Every word of L′ is of the form ya where
there exists x; y; z ∈�∗ such that xayaz ∈L1 and xaz ∈L2.

Hence, L′ =L1 � L2.

This leads to decidability questions regarding whether or not a language from a
given language family is sins-closed or not.

Let NCM be the family of languages accepted by one-way, nondeterministic reversal-
bounded multicounter automata [16] and let DCM by the deterministic variant. We will
need some results from [4,16], which are summarized in the following proposition:

Proposition 18. (1) NCM is e;ectively closed under intersection, is a full trio and
has a decidable emptiness problem (given a machine M , is L(M) empty?).

(2) DCM is e;ectively closed under complementation.

Proposition 19. Let L1;L2 be language families, � a <nite alphabet, L∈L1; L⊆�∗,
satisfying the following conditions:
(1) L1 is e;ectively contained in L2 and is e;ectively closed under complementation,
(2) L2 is e;ectively closed under intersection and the full trio operations with a

decidable emptiness problem.
Then it is decidable whether L is sins-closed over � and whether L is sdel-closed

over �.

Proof. It is enough to decide whether there exists w∈L such that w 
∈ sins(L)
(respectively sdel(L)). Further, w 
∈ sins(L) if and only if w∈L � L (respectively
L� L), by Proposition 7 (respectively 9). Since L1 is closed under complementa-
tion, L∈L1 ⊆L2. By Proposition 17, L�L∈L2 (respectively L�L∈L2). Further,
since L2 is intersection-closed, (L�L) ∩L∈L2 (respectively (L�L) ∩L∈L2). Thus,
this set is empty if and only if L is sins-closed (respectively sdel-closed).
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Hence, by the decidability of emptiness for L2, it is decidable whether an arbitrary
language in L1 is sins- or sdel-closed.

Combining Propositions 18 and 19, we obtain:

Corollary 20. Let � be an alphabet, L∈DCM; L⊆�∗. Then it is decidable whether
L is sins-closed over � and whether L is sdel-closed over �.

The result above also holds for the family of regular languages. Also, it is known
that NCM is eKectively equal to the %nite-crossing nondeterministic reversal-bounded
multicounter languages (%nite-crossing refers to a two-way input tape where there is
a bound on the number of switches between moving left and right on the input tape)
[12]. It is also known that the family of %nite-crossing deterministic reversal-bounded
multicounter languages is closed under complement [16], so the result above is also
true for this language family as well.

The question arises of whether decidability remains true when nondeterminism is
used. We will show that even for one-way, nondeterministic 1-reversal bounded single
counter languages, it is undecidable whether an arbitrary language is sins-closed. Let
NCM(1; 1) denote this language family.

A valid computation [15] of a Turing Machine M is a string cx1cx2c · · · cxmc where xi
is an instantaneous description of M for all i, x1 is an initial instantaneous description,
xm is an instantaneous description with %nal state and xi+1 follows from xi by one
move of M , for all i. An invalid computation of M is any string that is not of this
form. It is known that the language of invalid computations of M can be accepted by
a one-way, nondeterministic one-reversal bounded single counter machine [1].

Proposition 21. Let � be a <nite alphabet, L∈NCM(1; 1); L⊆�∗. Then it is unde-
cidable whether L is sins-closed over � and whether L is sdel-closed over �.

Proof. Let M be a Turing Machine and let L∈NCM(1; 1) be the language of in-
valid computations of M . Thus, L is the language of valid computations of M . As
noted above, L is sins-closed (respectively sdel-closed) if and only if L∩ (L� L) = ∅
(respectively L∩ (L� L) = ∅).

Assume that L is empty. Then clearly L� L is empty and so L∩ (L� L) is also.
Similarly, L∩ (L� L) is empty.

Assume that there exists w∈L. Then the string c is in L since c is an invalid
computation (has to enter at least one state). Also, {w} � {c} is nonempty since
c−1w∈ {w}�{c} and it is also an invalid computation. Thus, L∩ (L�L) is nonempty.
Similarly, wc∈L since it is an invalid computation always. Let w=w1c. But then
c∈w1cc�w1c. Consequently, L�L is nonempty and L∩ (L�L) is nonempty since
c is an invalid computation.

Thus, L∩ (L� L) = ∅ and L∩ (L� L) = ∅ if and only if L is empty if and only if
the language of valid computations of M is empty, which is undecidable.

Hence, it is undecidable whether L is sins-closed and whether L is sdel-closed.
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Corollary 22. Let � be an alphabet. It is undecidable whether a linear or context-
free language over � is sins-closed over �. Furthermore, it is undecidable whether a
linear or context-free language over � is sdel-closed over �.

The question remains of whether decidability is still true when we remove the
reversal-bounded condition on deterministic multicounter automata. We will see that
this is not the case even when there is only one counter.

Let DCM(1) be the family of languages accepted by one-way deterministic single
counter automata (no reversal bound).

Proposition 23. Let L be a language family, � an alphabet, L∈L; L⊆�∗ satisfying
the following properties:
(1) if L1; L2 ∈L; R a regular language, c; d new symbols, then c(L1d)+ ∪ (L2d)+;

L1 ∪R∈L, both e;ective.
(2) L has an undecidable inclusion problem (given L1; L2 ∈L, is L1 ⊆L2?).
Then it is undecidable whether L∈L is sins-closed over �.

Proof. Let L1; L2 ∈L and c; d be new symbols. Let L′
1 = c(L1d)+ and L′

2 = (L2d)+.
Let L3 = {a1 · · · an | c∈ alph(a2 · · · an)}. It is obvious that L3 is a regular language and
by the assumptions, L=L′

1 ∪L′
2 ∪L3 ∈L. We will show that L is sins-closed if and

only if L2 ⊆L1. Let x∈L.
First, assume that x∈L′

1. Then �⊕ x⊆L3 ⊆L for all �∈L′
1. Also, �⊕ x⊆L3 ⊆L for

all �∈L3. Further, �⊕ x= {udvdy | �= udy; x= vd}, d as above, for all �∈L′
2 where

the %rst letter of v is c. Thus, �⊕ x⊆L3 for all �∈L′
2. Therefore, L′

1 ⊆ sins(L).
Second, assume that x∈L3. Then �⊕ x⊆L3 ⊆L for all �∈L′

1. Also, �⊕ x⊆L3 ⊆L
for all �∈L′

2. Further, �⊕ x⊆L3 ⊆L for all �∈L3. Hence, L3 ⊆ sins(L).
Last, assume that x∈L′

2. Then �⊕ x⊆L2 ⊆L for all �∈L′
2. Also, �⊕ x⊆L3 ⊆L for

all �∈L3. Further, �⊕ x⊆L if and only if �⊕ x⊆L′
1 for all �∈L′

1.
Thus, L is sins-closed if and only if �⊕ x⊆L′

1 for all �∈L′
1; x∈L′

2. Assume that
�⊕ x⊆L′

1 for all �∈L′
1; x∈L′

2. Then it must be the case that L2 ⊆L1. Assume that
L2 ⊆L1. Consequently, �⊕ x⊆L′

1 for all �∈L′
1; x∈L′

2.
Hence, L is sins-closed if and only if L2 ⊆L1, which is an undecidable problem.

Corollary 24. Let L∈DCM(1), � an alphabet, L⊆�∗. Then it is undecidable
whether L is sins-closed over �. In addition, it is undecidable whether a deterministic
context-free language is sins-closed over �.

Proof. It is known that the inclusion problem is undecidable for the language family
DCM(1) [16]. Moreover, the languages L′

1 and L′
2 in the proof above are in DCM(1)

since DCM(1) is closed under marked 2 + and concatenation on the left by a new
symbol [14]. Further L′

1 ∪L′
2 ∈DCM(1) since if the %rst letter is c then do the %rst

automaton, otherwise do the second. It is also known that DCM(1) is closed under
union with regular languages (This follows from the facts that DCM(1) is closed
under complement, [14], DCM(1) is closed under intersection with regular languages

2 The marked + of a language L is (Ld)+ where d is a new symbol.
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since the standard proof [15] of closure of deterministic context-free languages under
intersection with regular languages does not increase the size of the pushdown alphabet
and the fact that L∪R= (L∩R) where R is a regular language). Thus, the corollary
holds.

Similar to the results for SINS, we obtain undecidability with deterministic single
counter languages for SDEL.

Proposition 25. Let L be a language family, � a <nite alphabet, L∈L; L⊆�∗ sat-
isfying the following properties:
(1) if L1; L2 ∈L; c; d new symbols, then dcL1d∪ cL2d∈L and L1 ∈L, both e;ective,
(2) L has an undecidable inclusion problem.
Then it is undecidable whether L is sdel-closed over �.

Proof. Let L1; L2 ∈L and c; d be new symbols. Let L′
1 =dcL1d, L′

2 = cL2d and let
L=L1 ∪L2 ∈L, by assumption.

We will show that L is sdel-closed if and only if L2 ⊆L1. Let x∈L.
First, assume that x∈L′

1. Then �� x= ∅ ⊆L for all �∈L′
1. Further, �� x= ∅ ⊆L for

all �∈L′
2. Hence, L′

1 ⊆ sdel(L).
Then, assume that x∈L′

2. So, �� x= ∅ ⊆L for all �∈L′
2. Further, �� x is always

equal to either {d} or the emptyset for each �∈L′
1. Assume that {d} = �� x. Thus,

�=dcvd and x= cvd for some v∈L1 ∩L2. Hence, L2 
⊆L1. Assume that �� x= ∅.
Thus, v 
∈L1 ∩L2 where �=dcvd; x= cvd. So, if L′

1 �L′
2 = ∅ then L1 ∩L2 = ∅ and

L2 ⊆L1. Of course, ∅ ⊆L and {d} 
⊆L.
Hence, L is sdel-closed if and only if L2 ⊆L1, which is an undecidable problem.

In the proof above, it is immediate that L′
1; L

′
2 ∈DCM(1) since DCM(1) is closed

under concatenation on the left and right by a new symbol and also complementation
[14]. Also, L∈DCM(1) since if the %rst letter is d then do M ′

1 otherwise do M ′
2.

Corollary 26. Let � be an alphabet, L∈DCM(1); L⊆�∗. Then it is undecidable
whether L is sdel-closed over �. Moreover, it is undecidable whether a determin-
istic context-free language is sdel-closed over �.

4. Hi, dlad and ld

There are also three unary operations, hi, dlad and ld from [7–9], inspired by in-
tramolecular DNA recombination. We now recall the de%nitions of the hi and dlad
operations.

De�nition 27. Let w∈�∗.
(1) The hairpin inverse of w, denoted by hi(w) is de%ned as

hi(w) = {xpyRpRz |w = xpypRz and x; y; z ∈ �∗; p ∈ �+}:
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(2) The double loop with alternating direct pointers operation on w, denoted by dlad
(w) is de%ned as

dlad(w) = {xp�qyp�qz |w = xp�qyp�qz; x; y; z; �; � ∈ �∗; p; q ∈ �+}:

The operations are then extended to unary operations on languages in the natural
way.

We recall the following lemma from [3,4].

Lemma 28. Let w∈�∗. Then
(1) hi(w) = {xayRaz |w= xayaz; a∈�; x; y; z ∈�∗},
(2) dlad(w) = {xa�bya�bz |w= xa�bya�bz; x; y; z; �; �∈�∗; a; b∈�}.

We call the letters a and b above the pointers.
Based on Lemma 28, we shall always assume without loss of generality that the

pointers for the hi and dlad operators are of length one.
We %nd it convenient for Proposition 31 to %rst de%ne the following variant of the

hairpin inversion operator. This variant forces the pointer to be a particular letter.

De�nition 29. Let � be an alphabet, w∈�∗ and let a∈�. The a-projected hairpin in-
verse of w, denoted by hia(w) is de%ned as hia(w) = {xayRaz |w= xayaz; x; y; z ∈�∗}.

We extend this de%nition to languages similar to above.

Lemma 30. Let L be a trio closed under hi. Then for each L∈L over �, and for
each a∈�, hia(L) ∈L.

Proof. Let $1; $2; $3; $4 be new symbols. We construct an nondeterministic gsm M
that outputs the input until it reaches an arbitrary occurrence of the letter a. Then,
M outputs $1a$2. Then, M continues to output the input until another arbitrary occur-
rence of the letter a, where M outputs $3a$4 and continues to output the input. Let
h be a homomorphism that erases all $ symbols and leaves all others %xed. Consider
L′ = h(hi(M (L)) ∩�∗$1a$3�∗$2a$4�∗). It is clear that L′ = hia(L). Furthermore, every
trio is closed under 	-free nondeterministic gsm mappings, limited erasing homomor-
phisms that do not introduce the empty word and intersection with regular languages.

This shows that every hi-closed trio is also closed under the projected hi operator,
for each letter. This will signi%cantly simplify the proof of Proposition 31.

Next, we see that for all trios, closure under dlad is a consequence of closure
under hi.

Proposition 31. Let L be a trio closed under hi. Then L is closed under dlad.

Proof. Let L∈L over �. Let M be an 	-free a-transducer M = (Q;�; �∪); �; q0; {q})
where )= {$; $1; $2; $3}, all new symbols, � is the input alphabet, �∪) is the
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output alphabet, Q= {q0; q} ∪ {qa; qab; q′
a | a; b∈�} is the set of states, q is the %nal

state and the transitions are de%ned by, �= {(q0; a; a; q0), (q0; a; $$1a; qa), (qa; b; b; qa),
(qa; b; b$1$2; qab), (qab; c; c; qab), (qab; a; $2$3a; q′

b), (q′
b; c; c; q

′
b), (q′

b; b; b$3$; q), (q; c; c; q)}
for all a; b; c∈�. Intuitively, M outputs the input until it reaches an arbitrary input let-
ter p, where M outputs $$1p and continues outputting the input. Then at an arbitrary
letter q, M outputs q$1$2 and continues to output the input. Then, at an arbitrary oc-
currence of the letter p (the same letter as above which we keep track of using the
subscript on the states), M outputs $2$3p and continues to output the input. Then, at
an arbitrary occurrence of q (also as above), M outputs q$3$. Let L′ =M (L). Every
word of L′ is of the form

x$$1p�q$1$2y$2$3p�q$3$z (1)

with x; y; z; �; �∈�∗; p; q∈�. Consider L′′ = hi$3(hi$2(hi$1(hi$(L′)))). This sequence of
operations %rst Mips the entire subword between the %rst and last pointer, then the three
subwords between each pointer. Thus, the word of L′′ corresponding to the word in
(1) is of the form,

x$$3p�q$3$2y$2$1p�q$1$z:

Let h be a homomorphism that erases all $ letters and leaves all others unchanged.
Clearly, h(L′′) =dlad(L). Furthermore, every hi-closed trio is closed under the pro-
jected hi operators, 	-free gsm mappings and limited erasing homomorphisms that do
not introduce the empty word.

Hence, every hi-closed trio is closed under dlad.

This serves to simplify the closure of some language families under dlad [4]. Fur-
thermore, this result combined with the proof that every full trio is closed under the ld
bio-operator, implies that every hi-closed full trio is closed under all three bio-operators
inspired by intramolecular DNA recombination [7–9].

Corollary 32. Every hi-closed full trio is closed under hi, dlad and ld.

This shows the power and importance of the hairpin inversion operation.

5. Hi-closed languages

The previous section demonstrates the importance of the hairpin inversion operation.
In this section, we will study languages that are closed under hairpin inversion.

We say that a language L⊆�∗ is hi-closed if hi(L) ⊆L.

Example 33. (1) hi(a+) = aa+.
(2) Let Lab = {w | |w|a = |w|b¿0}. Then hi(Lab) = {w | |w|a = |w|b¿1}.
(3) hi({anbn | n¿0}) = {anbn | n¿2}.
(4) hi({abca}) = {acba}.
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We see that numbers (1)–(3) of Example 4 are hi-closed.
We denote the family of hi-closed languages by HI. By the de%nition of hi-closed

languages, it is clear that if L∈HI; w∈L then hi(w) ⊆L. We note that hi(hi(L)) ⊆L.
Also, if w∈L and w= uavax for some a∈�, then w∈ hi(hi(w)). Therefore, for all
w∈L such that |w|a¿2 for some a∈�, w∈ hi(L). Let R� be the %nite set of all
words over � such that w∈R� implies that |w|a¡2 for all a∈�. Hence, if L is
hi-closed, it follows that L − R� = hi(L).

By the eKective closure of regular languages under hi [3] and the decidability of the
inclusion problem, we obtain:

Proposition 34. Let L be a regular language. Then it is decidable whether L∈HI.

This could also be shown by taking the set diKerence of L with the %nite language
R� and testing for equality with hi(L).

We would like to consider similar questions for more general families of languages.
We %rst will need to develop some notation.

De�nition 35. Let w∈�∗; �= {a1; : : : ; ak}. We denote by

,(w) =




	 if w = 	;
ai1 · · · aim otherwise if w = aj1

i1 · · · ajmim ; il 
= il+1 for
all 1 6 l6 m − 1 and ji ¿ 0 for all 1 6 i 6 m:

We de%ne an equivalence relation ≡ ⊆�∗×�∗ by w≡w′ if and only if ,(w) = ,(w′)
and �(w) =�(w′). We denote by [w] the equivalence class of w.

Proposition 36. Let �= {a; b}; L⊆�∗. Then L is a (potentially in<nite) union of
equivalence classes of ≡ if and only if L∈HI.

Proof. “⇒” Suppose that L is a union of equivalence classes of ≡. Let w∈ hi(L). Thus
w= uavRay where w′ = uavay∈L. Notice that �(ava) =�(avRa). Furthermore, since
L is over a binary alphabet, ,(ava) = ,(avRa). Thus, �(w) =�(w′) and ,(w) = ,(w′).
Consequently, w≡w′, w∈L and hi(L) ⊆L.

“⇐” Suppose L∈HI. Therefore, hi(L) ⊆L. Let w∈L. Consider v∈ [w]. Thus,
�(v) =�(w) and ,(v) = ,(w). We will show that v∈L. If w= v= 	 then v∈L. As-
sume then that w; v∈�+. First, we will show that if the maximal common pre%x 3 of
v and w is of size n, where 06n¡|w|, then we can construct a word w′ ∈L such that
[v] = [w] = [w′] and the maximal common pre%x of v and w′ is of size greater than n.

We note that the maximal common pre%x of w and v must be at least one since
,(w) = ,(v). If the maximal common pre%x of w and v is of length |w|, then w= v∈L.
Assume that the maximal common pre%x of v and w is of length n; 16n¡|w|. Let the
n+1st position of w be c, the n+1st position of v be d (with c 
=d) and the common nth

3 The maximal common pre%x of v; w∈�∗, is the longest, unique word u∈�∗ such that v= uv1; w = uv2
for some v1; v2 ∈�∗.
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position be e, where c; d; e∈ {a; b}. Indeed, w= xecx1; v= xedy1; x; x1; y1 ∈ {a; b}∗; e; c;
d∈ {a; b}; c 
=d.

Assume that e= c, therefore w= xccx1; v= xcdy1. Since |w|d = |v|d and � is bi-
nary, it follows that w= xccx2dx3, with x2 ∈ c∗; x3 ∈�∗. Furthermore, since |w|c = |v|c
and � is binary, it follows that v= xcy2dcy3, with y2 ∈d∗; y3 ∈�∗. However, since
,(w) = ,(v), (in particular since ,(cy2dc) = ,(cdc)), we can rewrite w= xccx2dx4cx5;
x2 ∈ c∗; x4 ∈d∗; x5 ∈�∗. Because L is hi-closed, w′ = xcxR4dx

R
2 ccx5 ∈L; [w′] = [w] since

� is binary and the maximal common pre%x of v and w′ is of length greater than n.
Assume that e=d, therefore w= xdcx1; v= xddy1. We say that a word � is an in%x

of �, denoted �6i� if there exists words �1; �2 ∈�∗ such that �= �1��2.

Claim 37. dd6ix1.

Proof. Assume otherwise. We know that both ,(dcx1) = ,(ddy1) and that
�(dcx1) =�(ddy1) hold. By the assumption, dcx1 ∈ (dc+)mc∗ for some m¿1. Since,
,(dcx1) = ,(ddy1), it must be the case that ddy1 ∈ (d+c+)mc∗. However, |ddy1|d¿m
since the %rst two letters are dd and |dcx1|d =m, a contradiction.

Consequently, w= xdcx2ddx3 for some x2; x3 ∈�∗. Furthermore, w′ = xddxR2 cdx3 ∈L
for some x2; x3 ∈�∗ since L is hi-closed, it is clear that [w] = [w′] since � is binary
and the maximal common pre%x of w′ and v is of length at least n + 1.

Therefore, if the maximal common pre%x is of length |w|, then w= v∈L. Assume
that the maximal common pre%x is of size 16n¡|w|. Then we can construct a word
w′ ∈L such that [v] = [w] = [w′] and the maximal common pre%x of w′ and v is of
length greater than n. Therefore, by way of induction, we can construct a word wi with
maximal common pre%x of size |v| with v such that [v] = [w] = [wi] and wi ∈L. Thus,
v=wi ∈L and [v] ⊆L.

Hence L is a union of equivalence classes of ≡ if and only if L is hi-closed.

Thus, L∈HI; L⊆ {a; b}∗ is a (potentially in%nite) union of equivalence classes of
≡. However, each equivalence class has a relatively simple structure. Indeed, for any
equivalence class [w] where w∈L, we can uniquely represent [w] by the number of
a’s of any word in [w], the number of b’s of any word in [w], the number n where for
every word v∈ [w], v∈ (c+d+)nc∗; c; d∈ {a; b}; c 
=d, the starting letter c, and whether
the trailing c∗ is empty or not.

Let NPCM be the family of languages accepted by machines de%ned by a non-
deterministic pushdown augmented by k-reversal bounded counters, for any k, and a
one-way input tape. It is known that the emptiness problem is decidable for NPCM
[13,16]. Let DPCM be the family of languages accepted by the deterministic variant.
It is known that DPCM is closed under complement [16]. Using ideas in [13], we can
prove the following proposition:

Proposition 38. Let �={a; b}; L∈DPCM; L⊆�∗. Then it is decidable whether
L∈HI.
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Proof. Let L=L(M) ∈DPCM for some machine M . We will construct a machine
M ′ ∈NPCM such that L(M ′) = ∅ if and only if L∈HI. Let $ be a new symbol.
Indeed, M ′ will accept all words w$w′ where w∈L; w′ ∈L and [w] = [w′]. Let w$w′

be the input. By Proposition 36, L(M ′) = ∅ if and only if L∈HI.
Construct M ′ such that M ′ simulates M on w and in parallel, records the %rst letter c

and the last letter e in the %nite control and n1; n2; n3 in three new 1-
reversal-bounded counters, where n1 = |w|a; n2 = |w|b and n3 is such that w∈ (c+d+)n3c∗

for some c; d∈ {a; b}; c 
=d. If w∈L, then, in parallel, verify both that w′ ∈L and that
[w′] = [w], i.e. |w′|a = n1; |w′|b = n2, the %rst letter is c, the last letter is e, and that n3

is such that w′ ∈ (c+d+)n3c∗. Thus w$w′ ∈L(M ′) if and only if w∈L, w′ 
∈L such that
[w] = [w′].

Hence it is decidable whether L∈HI.

Corollary 39. Let �= {a; b}, L a deterministic context-free language, L⊆�∗. Then
it is decidable whether L∈HI.

We, as yet, have been unable to prove this for alphabets of arbitrary size.
The question arises of whether decidability remains true when nondeterminism is

used. We will show that even for one-way, nondeterministic 1-reversal bounded single
counter languages, it is undecidable whether an arbitrary language is hi-closed. Let
NCM(1; 1) denote this language family.

To see the undecidability of hi-closure for this family, we observe that it is unde-
cidable whether the language accepted by an arbitrary Turing Machine M that makes
at least two moves and has distinct initial and %nal states is empty. Furthermore, it
is known that the language of invalid computations of M can be accepted by a one-
way, nondeterministic one-reversal bounded counter automaton [1]. We will use the
following lemma:

Lemma 40. Let L⊆�∗ and let L∈HI. Then w= cw1cw2cw3c∈L if and only if
w′ = cw3cw2cw1c∈L.

Proof. Assume w= cw1cw2cw3c∈L. Then cwR
3 cw

R
2 cw

R
1 c∈L by reversing the word

between the two outermost c’s and cw3cw2cw1c∈L by then reversing the word be-
tween the %rst two c’s, the second and third c and then the third and fourth c. The
converse is similar.

Lemma 41. Let M be a Turing Machine that has disjoint start and <nal states and
makes at least two moves before accepting any word. Let LM be the language of
invalid computations of M . Then LM is hi-closed if and only if LM =�∗.

Proof. “⇒” Assume that LM is hi-closed and LM 
=�∗. Thus there exists a valid
computation cx1cx2c · · · cxmc. However, cxmcx2c · · · cx1c∈LM since m¿2 and the %-
nal and initial states are disjoint. But since LM is hi-closed, cx1cx2c · · · cxmc∈LM , by
Lemma 40, a contradiction.

“⇐” It is immediate that �∗ is hi-closed.
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This, in conjunction with the fact that it is undecidable whether a Turing Machine
that has disjoint initial states and %nal states that must make at least two moves on an
accepting computation is empty, we obtain:

Proposition 42. Let L∈NCM(1; 1). Then it is undecidable whether L∈HI.

As corollary, it is immediate that:

Corollary 43. Let L be a context-free or linear language. Then it is undecidable
whether L∈HI.

We next sum up the closure properties of the family HI.

Proposition 44. The family of hi-closed languages is not closed under (i) intersec-
tion with regular languages, (ii) intersection with <nite languages, (iii) homomor-
phism, (iv) 	-free homomorphism, (v) concatenation, (vi) ∗, (vii) + or (viii) inverse
homomorphism.

Proof. (i), (ii) Let L1 = {abaa; aaba} ∈HI. However, L1 ∩ {abaa} = {abaa} 
∈HI.
Hence, HI is not closed under intersection with regular or %nite sets.

(iii), (iv) Let L2 = {ccabd} ∈HI. Let h be a homomorphism that maps the letter
d to c and leaves all others unchanged. But, h(L) = {ccabc} 
∈HI. Hence, HI is not
closed under homomorphism or 	-free homomorphism.

(v) Let L3 = {ccab}; L4 = {cc} ∈HI. But, L3L4 = {ccabcc} 
∈HI. Hence HI is not
closed under concatenation.

(vi),(vii) Let L5 =L∗
3 . Then ccabccab∈L5, but ccbaccab 
∈L5. Hence HI is not

closed under ∗. Similarly, HI is not closed under +.
(viii) Let L6 = {bcdebc; bcbedc; bedcbc}. Let h be a homomorphism from the set

{a; d; e}∗ to {b; c; d; e}∗ that maps a to bc, d to d and e to e. Then h−1(L6) = {adea} 
∈
HI. Hence, HI is not closed under inverse homomorphism.

However, we see that the family is closed under three standard operations.

Proposition 45. HI is closed under union, complementation and intersection.

Proof. Let L∈HI. Therefore, if w∈L, then hi(w) ⊆L. Let v∈L. Assume that hi(v) 
⊆L.
Thus, there exists u∈ hi(v) such that u∈L. So hi(u) ⊆L. However, v∈ hi(u) since
u∈ hi(v). Thus, v∈L, a contradiction. Hence, HI is closed under complementation.

Let L1; L2 ∈HI, L=L1 ∪L2 and w∈L. Then either w∈L1 or w∈L2. If w∈L1 then
hi(w) ⊆L1 and if w∈L2 then hi(w) ⊆L2. Thus, hi(w) ⊆L. Hence, HI is closed under
union.

Closure under intersection follows from both closure under union and complement.
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6. Conclusions

In this paper we have studied the properties of, and relationships between, families of
languages de%ned by closure under the synchronized insertion, synchronized deletion,
and hairpin inversion operations.

We have shown that while the family of synchronized-insertion-closed languages
is closed under intersection, it is not closed under union, catenation, homomorphism,
inverse homomorphism, intersection with a regular sets, Kleene closure or complement
and is thus an anti-AFL. We have also shown that it is decidable if a language de%ned
by a one-way deterministic reversal-bounded multicounter machine is a synchronized-
insertion-closed language. The same question is undecidable for languages de%ned by
one-way nondeterministic 1-reversal-bounded single counter machines and languages
de%ned by one-way deterministic single counter automata.

Similarly, we showed that the family of synchronized-deletion-closed languages
is an intersection-closed anti-AFL. Furthermore, it is decidable if a given deterministic
reversal-bounded multicounter language is a synchronized-deletion-closed language
while the same question is undecidable for one-way nondeterministic 1-reversal-
bounded single counter languages and one-way deterministic single counter languages.

Families of languages de%ned by closure under the hairpin-inversion operation were
shown to be closed under union, intersection and complementation but not under in-
tersection with regular languages, homomorphism, inverse homomorphism, concate-
nation or Kleene closure. Moreover, it is decidable if an arbitrary regular language
is a hairpin-inversion-closed language while the same question is undecidable for
one-way nondeterministic 1-reversal bounded single counter languages. We further
showed that it is decidable if a language de%ned by a deterministic pushdown ma-
chine augmented with multiple reversal-bounded counters over a binary alphabet is a
hairpin-inversion-closed language. This question remains open over alphabets of arbi-
trary size.

We additionally demonstrated the central importance of the hairpin inversion
operation with the result that, for any trio, closure under hairpin inversion implies
closure under the dlad operation.

By considering families of languages that are de%ned by closure under a biolog-
ical gene descrambling operation, we gain insight into the structure of “maximally
descrambled” genomes. That is, a language closed under a particular operation rep-
resents a %xed-point with respect to iterated application of that operation. Informa-
tion of this sort can potentially carry biological relevance. In this case, if we view
the descrambling process as a technique to intentionally induce evolution through
genetic mutation, then the language families studied in this paper perhaps represent
“dead end” genomes in which no further evolution is possible using the chosen
operation.

Of further interest are families of languages de%ned by closure under multiple
operations, the ld and dlad operations, as well as the new template-guided descrambling
model introduced in [21] and studied formally in [6]. It is hoped that further study of
the theoretical properties of these models will lead us to new insights in the genetics
of stichotrichous ciliates.
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